Abstract
The transition from steady axisymmetric Taylor vortices to time-dependent wavy vortices is examined. The critical Taylor number and frequency at the transition point are determined in the infinite-cylinder approximation for a wide range of parameters. The results are compared with long-aspect-ratio experiments. The variation with axial wavelength is examined, and is found to be important when the radius ratio η < 0.75. A new spatially subharmonic mode is found to be the most unstable mode in some parameter regimes. This mode is identified with the jet mode recently discovered experimentally by Lorenzen, Pfister & Mullin and by Cole.