Abstract
Treatment of the predictive aspect of statistical mechanics as a form of statistical inference is extended to the density-matrix formalism and applied to a discussion of the relation between irreversibility and information loss. A principle of "statistical complementarity" is pointed out, according to which the empirically verifiable probabilities of statistical mechanics necessarily correspond to incomplete predictions. A preliminary discussion is given of the second law of thermodynamics and of a certain class of irreversible processes, in an approximation equivalent to that of the semiclassical theory of radiation.