Conformational Properties of a Phototautomerizable Nucleoside Biomarker for Phenolic Carcinogen Exposure

Abstract
We have characterized the conformational properties of the C8-deoxyguanosine (C8-dG) nucleoside adduct, 8-(2"-hydroxyphenyl)-2‘-dG (1), which is a potential biomarker for exposure to phenolic carcinogens. Adduct 1 possesses the unique ability to phototautomerize, through an excited-state intramolecular proton transfer (ESIPT) process, to generate its keto form. This tautomerization depends on the presence of an intramolecular hydrogen (H)-bond between the phenolic OH and the imine nitrogen (N7) and has permitted insight into the equilibrium ground states of adduct 1. The results of our studies demonstrate that adduct 1 undergoes an ESIPT despite preferring a nonplanar “twisted” conformation that is imposed by the deoxyribose (dR) sugar moiety. Interestingly, a planar conformation of adduct 1 is also formed in certain aprotic solvents due to the anchoring effect of the intramolecular H-bond. Our results provide a basis for future studies aimed at determining the conformations of adduct 1 within DNA that will aid in our understanding of phenol-mediated carcinogenesis.

This publication has 20 references indexed in Scilit: