Abstract
Air monitoring data for a calendar year at one of the TVA power plants has been used to evaluate the appropriateness of the Sutton, the Bosanquet and Pearson, and the USPHS-TVA atmospheric dispersion models to predict ground level concentrations of sulfur dioxide from emission and meterological data. Aerometric data included one half hourly average sulfur dioxide concentrations, recorded by four Thomas autometers, and the necessary meterological parameters for the solving of atmospheric dispersion models. Based on these meterological parameters and observed plume rise data, over 4000 one half hourly average maximum and minimum expected ground line sulfur dioxide concentrations were predicted for each of the above dispersion models by the use of computer techniques. The plant is a line source; however, an empirical correction was applied to emission data to reduce them to emissions for an equivalent point source. The predicted sulfur dioxide levels for each of the dispersion models were compared to the measured levels throughout the year. Three different sets of diffusion coefficients were applied to the Sutton model and successful predictions, according to a criterion utilizing an acceptable range of concentration, varied from 66 to 93%. The Bosanquet and Pearson model produced successful predictions 90% of the time, while the USPHS-TVA model was successful 94% of the time.Unsuccessful predictions were primarily overestimates.