Addition of lipid to the photosynthetic membrane: effects on membrane structure and energy transfer.

Abstract
A series of experiments were performed in which the lipid composition of the photosynthetic membrane was altered by the addition of lipid from a defined source under experimental conditions. Liposomes prepared by sonication are mixed with purified photosynthetic membranes obtained from spinach chloroplasts and are taken through cycles of freezing and thawing. Several lines of evidence, including gel electrophoresis and freeze-fracture EM, indicate that an actual addition of lipid has taken place. Structural analysis by freeze-fracture shows that intramembrane particles are widely separated after the addition of large amounts of lipid, with 1 exception: large hexagonal lattices of particles appear in some regions of the membrane. These lattices are identical in appearance with lattices formed from a single purified component of the membrane known as chlorophyll-protein complex II. The suggestion that the presence of such lattices in lipid-enriched membranes reflects a profound rearrangement of photosynthetic structures has been confirmed by analysis of the fluorescence emission spectra of natural and lipid-enriched membranes. Specifically, lipid addition in each case results in the apparent detachment of chlorophyll-protein complex II from photosynthetic reaction centers. It is concluded that specific arrangements of components in the photosynthetic membrane, necessary for the normal functioning of the membrane in the light reaction of photosynthesis, can be regulated to a large extent by the lipid content of the membrane.

This publication has 13 references indexed in Scilit: