Light Response of the Circadian Waves of the APRR1/TOC1 Quintet: When Does the Quintet Start Singing Rhythmically in Arabidopsis?
Open Access
- 15 March 2001
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant and Cell Physiology
- Vol. 42 (3), 334-339
- https://doi.org/10.1093/pcp/pce036
Abstract
We previously identified a novel class of proteins, named Arabidopsis pseudo-response regulators (APRRs), each of which (APRR1/TOC1, APRR3, APRR5, APRR7, APRR9) has an intriguing structural design containing an N-terminal pseudo-receiver domain and a C-terminal CONSTANS motif. Expression of these APRR1/TOC1 family members is under the control of a coordinate circadian rhythm at the level of transcription such that the APRR-mRNAs start accumulating sequentially after dawn with 2 to 3 h intervals in the order of APRR9→APRR7→APRR5→APRR3→APRR1/TOC1 in a given 24 h photo-period. Based on these data, we previously proposed that these sequential and rhythmic events of transcription, termed ‘circadian waves of APRR1/TOC1 quintet’, may be a basis of a presumed Arabidopsis biological clock (named ‘bar code clock’) [Matsushika et al. (2000)Plant and Cell Physiol. 41: 1002]. Here we further characterized the event of circadian waves, by demonstrating that certain light stimuli are crucial determinants to induce the robust circadian waves, and accordingly, the first-boosted and light-induced APRR9 appears to be primarily responsible for this light response of the circadian waves. Also, as such a light stimulus, a red light pulse that is presumably perceived by phytochromes appears to be sufficient to induce (or synchronize) the APRR1/TOC1 circadian waves.Keywords
This publication has 29 references indexed in Scilit:
- Cloning of the Arabidopsis Clock Gene TOC1 , an Autoregulatory Response Regulator HomologScience, 2000
- How plants tell the timeCurrent Opinion in Plant Biology, 2000
- Identification of a cis-Regulatory Element Involved in Phytochrome Down-Regulated Expression of the Pea Small GTPase Gene pra21Plant Physiology, 1999
- The Orcadian System ofArabidopsis Thaliana: Forward and Reverse Genetic ApproachesChronobiology International, 1999
- GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSISAnnual Review of Plant Physiology and Plant Molecular Biology, 1998
- Coordination of Plant Metabolism and Development by the Circadian Clock.Plant Cell, 1997
- A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.Plant Cell, 1997
- Conditional Circadian Dysfunction of the Arabidopsis early-flowering 3 MutantScience, 1996
- The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of floweringThe Plant Journal, 1996
- Illuminating the mechanism of the circadian clock in plantsTrends in Plant Science, 1996