Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations

Abstract
Interleukin-8 has been shown by X-ray crystallography and NMR to be a homodimer, suggesting that this is the form which binds to its receptor. Here we measure, for the first time, the monomer-dimer equilibrium of interleukin-8 using analytical ultracentrifugation and titration microcalorimetry and find that it dissociates readily to monomers with an equilibrium dissociation constant of 18 +/- 6 microM at 37 degrees C. The present findings suggest that the monomer is the form which binds to the receptor. Comparison of experimental and structure-based calculated thermodynamics of interleukin-8 dimerization argues for limited subunit conformational changes upon dissociation to monomer.