Abstract
Dinitrophenol (1 x 10-5 [image]) has been found to inhibit anaerobic Na transport by the isolated urinary bladder of the fresh water turtle. Concurrently, anaerobic glycolysis was stimulated markedly. However, tissue ATP levels diminished only modestly, remaining at approximately 75% of values observed under anaerobic conditions without DNP. The utilization of glucose (from endog4nous glycogen) corresponded closely to that predicted from the molar quantities of lactate formed. Thus the glycolytic pathway was completed in the presence of DNP and if ATP were synthesized normally during glycolysis, synthesis should have been increased. On the other hand, the decrease in Na transport should have decreased ATP utilization. Oligomycin did not block sodium transport either aerobically or anaerobically, but ATP concentrations did decrease. When anaerobic glycolysis was blocked by iodo-acetate, pyruvate did not sustain sodium transport thus suggesting that no electron acceptors were available in the system. Two explanations are entertained for the anaerobic effect of DNP: (a) Stimulation by DNP of plasma membrane as well as mitochondrial ATPase activity; (b) inhibition of a high energy intermediate derived from glycolytic ATP or from glycolysis per se. The arguments relevant to each possibility are presented in the text. Although definitive resolution is not possible, we believe that the data favor the hypothesis that there was ahigh energy intermediate in the anaerobic system and that this intermediate, rather than ATP, served as the immediate source of energy for the Na pump.