Abstract
The incorporation of 32P into well washed human erythrocyte membranes was studied in a medium containing [gamma-32P]ATP, Mg2+, and EGTA. Following phosphorylation, the membranes were completely solubilized in 1% sodium dodecyl sulfate and subjected to gel electrophoresis in dodecyl sulfate polyacrylamide. A large incorporation of radioactivity was observed in a band which migrated faster than component 7 (nomenclature of T. L. Steck, (1972), J. Mol. Biol. 66, 295) but slower than the bromophenol blue tracking dye, and did not stain with Coomassie Blue. Isolation of this band by preparative gel electrophoresis revealed that 41% of the radioactivity was associated with a 32P-labeled polypeptide. This polypeptide was further purified by gel chromatography on Sephadex LH-20 in chloroform-methanol-HCl, and Bio-Gel A 1.5m in dodecyl sulfate. Its amino acid composition is characterized by a high content of acidic residues. The calculated minimal molecular weight is 15084. Based upon the recovery of amino acids, the polypeptide fraction comprises at least 1.8% by weight of the total erythrocyte membrane proteins. An apparent molecular weight of 15000 was estimated by gel chromatography in dodecyl sulfate, while a range of 14000-16000 was estimated by electrophoresis in dodecyl sulfate polyacrylamide. The state of phosphorylation of this peptide may reflect a physiological function in the intact red cell.
Keywords