Eu2+Mn2+energy transfer in NaCl

Abstract
Crystals of NaCl containing different concentrations of Eu2+ and Mn2+ ions (the Eu concentration always being less than that of Mn) were investigated by optical and EPR spectroscopy. The results show that Eu2+-Mn2+ pairs form preferentially in this material and that highly efficient energy transfer occurs from the Eu2+ ions to the near-neighbor Mn2+ ions. Over 99% of the Eu2+ ions are paired, and these pairs are not significantly affected by the state of aggregation of the Mn ions, although in the various samples evidence for manganese ions in their dipolar state, as well as precipitated into the Suzuki phase, exists. The excitation spectra of the orange manganese emission show, in addition to the Eu2+ 4f7→4f65d transitions, Mn2+ transitions associated with the Suzuki phase and with Mn2+-cation vacancy dipoles. The peak positions of these Mn2+-crystal-field-sensitive transitions were fitted theoretically with expressions including Racah-Tress and seniority corrections. This procedure allowed the determination of the relevant crystal-field parameters.