Abstract
We have investigated control mechanisms of TNF receptor expression (TNF-R) in various human tumor cells and normal peripheral blood monocytes. Activators of protein kinase A (PKA) signal transduction pathways were found to enhance TNF-R expression up to sevenfold, whereas in the same cells, IFN-alpha and -gamma receptors remained unaffected. Inhibitors of protein kinases downregulate both constitutive and cAMP-enhanced TNF-R expression. Binding studies revealed an increase in TNF-R numbers without a change in receptor affinity. Both, direct activators of PKA and inhibitors of phosphodiesterase, raising intracellular levels of cAMP, were found to be effective. As activation of PKA does not slow down the degradation rate of TNF-Rs, but rather enhances protein synthesis-dependent reexpression of TNF-Rs after transient PKC-mediated transmodulation and after tryptic digestion of TNF-Rs, it is concluded that PKA stimulates TNF-R synthesis. Maximum TNF-Rs enhancement is reached after 24 h of stimulation and is reversible, suggesting that receptor upregulation is not linked to irreversible steps of cellular differentiation. PKA-mediated enhancement of TNF-R expression was predominantly observed in normal peripheral blood monocytes and tumor cell lines of myeloid origin. As in these typical TNF producer cells, the production of TNF is also controlled by PKA and PKC, a regulatory circuit is proposed, by which these two independent signal pathways antagonistically regulate TNF production and, at the receptor level, TNF sensitivity.