Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip
- 19 December 2006
- journal article
- Published by Springer Nature in Biomedical Microdevices
- Vol. 9 (2), 253-259
- https://doi.org/10.1007/s10544-006-9029-z
Abstract
The purpose of this study was using a developed microfluidic chip to prepare size-controlled monodisperse chitosan microparticles encapsulating ampicillin. Our strategy is that a chitosan aqueous solution (the disperse phase) is fed into the microfluidic chip equipped with a cross-junction microchannel, and is sheared by the viscous oil flows (the continuous phase) to form monodisperse semi-product, chitosan emulsions. These fine emulsions are then gelled into stability upon gelation by injection of copper sulfate solution at the terminal microchannel of the microfluidic chip, and finally the uniform chitosan microparticles are formed in an efficient manner. The proposed chip is fabricated by a CO2 laser machine on a conventional poly methyl methacrylate (PMMA) substrate. This microfluidic chip has four inlet ports, one cross-channel and one outlet port. We have demonstrated that one can control the size of chitosan microparticles from 100 to 800 μm in diameter (with a variation less than 5%) by altering the relative sheath/sample flow rate ratio. Experimental data showed that when given a steady continuous phase (oil flow), the emulsion size increases with the increase in average velocity of the dispersed phase flow (sample flow). In addition, the release of the model drug (ampicillin) from these microspheres is proved to be once-daily for clinical application. We also revealed that appropriate particle sizes for different release patterns are predictable, enabling better applications of chitosan as a drug carrier.This publication has 22 references indexed in Scilit:
- Chitosan–alginate multilayer beads for controlled release of ampicillinInternational Journal of Pharmaceutics, 2005
- Manufacture of Granulated ChitosanFibre Chemistry, 2005
- Recent advances on chitosan-based micro- and nanoparticles in drug deliveryJournal of Controlled Release, 2004
- Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sortingLab on a Chip, 2004
- Theory and numerical simulation of droplet dynamics in complex flows—a reviewLab on a Chip, 2004
- Preparation of regular sized Ca-alginate microspheres using membrane emulsification methodJournal of Microencapsulation, 2001
- Chitosan microspheres prepared by spray dryingInternational Journal of Pharmaceutics, 1999
- Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolventJournal of Pharmaceutical Sciences, 1999
- Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheresBiomaterials, 1998
- Properties of a peptide containing dl-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methodsEuropean Journal of Pharmaceutics and Biopharmaceutics, 1998