Biomechanical Measurements of Calcium‐Incorporated Oxidized Implants in Rabbit Bone: Effect of Calcium Surface Chemistry of a Novel Implant
- 1 July 2004
- journal article
- Published by Wiley in Clinical Implant Dentistry and Related Research
- Vol. 6 (2), 101-110
- https://doi.org/10.1111/j.1708-8208.2004.tb00032.x
Abstract
Background: In oral implantology there has been a general trend away from machine-turned minimally rough and acid-etched and blasted implants toward intermediary roughened surfaces. Mechanical interlocking at micron resolution is claimed to be the dominant reason for the fixation of such implants in bone. However, clinical demands for stronger and faster bone bonding to the implant (eg, in immediately loaded and compromised bone cases) have motivated the development of novel surfaces capable of chemical bonding. Purpose: The purpose of the present study is to investigate bone tissue reactions to a newly developed calcium-incorporated oxidized implant. The specific aim is to assess the effect of calcium surface chemistry on the bone response. Materials and Methods: Calcium (Ca) ion-incorporated implants were prepared by micro arc oxidation methods. Surface oxide properties were characterized by using various surface analytic techniques involving scanning electron microscopy, x-ray diffractometry, x-ray photoelectron spectroscopy, and optical interferometry. Twenty screw-shaped commercially pure (CP) titanium implants (10 turned implants [controls] and 10 Ca-incorporated implants [tests]) were inserted in the femoral condyles of 10 New Zealand White rabbits. Results: After a healing period of 6 weeks, resonance frequency analyses and removal torque measurements of the Ca-incorporated oxidized implants demonstrated statistically significant improvements of implant integration with bone in comparison to machine-turned control implants (p = 0.013 and p = 0.005, respectively). Conclusions: The Ca-reinforced surface chemistry of the oxidized implants significantly improved bone responses in a rabbit model. The present study suggests that biochemical bonding at the bone-implant interface, in combination with mechanical interlocking, may play a dominant role in the fixation of Ca-incorporated oxidized implants in bone. The observed rapid and strong integration of test Ca implants may have clinical implications for immediate or early loading and improved performance in compromised bone.Keywords
This publication has 18 references indexed in Scilit:
- The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implantBiomaterials, 2003
- Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implantsClinical Oral Implants Research, 2003
- Resonance frequency and removal torque analysis of implants with turned and anodized surface oxidesClinical Oral Implants Research, 2002
- Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:Biomaterials, 2002
- Qualitative and quantitative observations of bone tissue reactions to anodised implantsBiomaterials, 2001
- Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatmentJournal of Biomedical Materials Research, 2001
- Bonding of chemically treated titanium implants to boneJournal of Biomedical Materials Research, 1997
- Early bone formation around calcium-ion-implanted titanium inserted into rat tibiaJournal of Biomedical Materials Research, 1997
- Pre-treatment of titanium implants with fluoride improves their retention in boneJournal of Materials Science: Materials in Medicine, 1995
- A study on the mechanism of protein adsorption to TiO2Biomaterials, 1991