Chemical Conversion of a DNA-Binding Protein into a Site-Specific Nuclease

Abstract
Individual DNA molecules undergoing agarose gel electrophoresis were viewed with the aid of a fluorescence microscope. Molecular shape and orientation were studied in both steady and pulsed electric fields. It was observed that (i) DNA macromolecules advanced lengthwise through the gel in an extended configuration, (ii) the molecules alternately contracted and lengthened as they moved, (iii) the molecules often became hooked around obstacles in a U-shape for extended periods, and (iv) the molecules displayed elasticity as they extended from both ends at once. A computer model has been developed that simulates the migration of the molecules in a rotating-field gel electrophoresis experiment.