Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach

Abstract
The continual needs for improved performances in applications derived by diversified compositions and mesostructures have pushed forward the development of mesoporous solids. The nonionic-surfactant-templating approach has been a critical route in this advancement. A large number of nonionic surfactants widely used in industries and featured with low cost, low toxicity, bio-degradation and ordered microdomains can be utilized as effective templates to the design and synthesis of abundant mesoporous solids. This feature article provides recent reports on the use of nonionic surfactant self-assembly as examples to fabricate high-quality ordered mesoporous solids which illustrates advances in synthesis and understanding of formation mechanisms. It includes the selection of surfactants, a summary of the effects of synthetic parameters, the current understanding of the synthetic pathways and related mechanisms with some emphasis on evaporation induced self-assembly (EISA), as well as the design and synthesis on the microscale (atomic and molecular compositions) and mesoscale (mesostructures). Preliminary applications of mesoporous solids particularly in optical devices, electrodes and biomaterials are also presented.

This publication has 216 references indexed in Scilit: