A key role for orexin in panic anxiety

Abstract
Orexin, a neuropeptide best known for its role in arousal and its absence in people with narcolepsy, is also involved in the pathophysiology of panic anxiety disorder. Panic disorder is a severe anxiety disorder with recurrent, debilitating panic attacks. In individuals with panic disorder there is evidence of decreased central γ-aminobutyric acid (GABA) activity as well as marked increases in autonomic and respiratory responses after intravenous infusions of hypertonic sodium lactate1,2,3. In a rat model of panic disorder, chronic inhibition of GABA synthesis in the dorsomedial-perifornical hypothalamus of rats produces anxiety-like states and a similar vulnerability to sodium lactate–induced cardioexcitatory responses4,5,6,7,8,9. The dorsomedial-perifornical hypothalamus is enriched in neurons containing orexin (ORX, also known as hypocretin)10, which have a crucial role in arousal10,11, vigilance10 and central autonomic mobilization12, all of which are key components of panic. Here we show that activation of ORX-synthesizing neurons is necessary for developing a panic-prone state in the rat panic model, and either silencing of the hypothalamic gene encoding ORX (Hcrt) with RNAi or systemic ORX-1 receptor antagonists blocks the panic responses. Moreover, we show that human subjects with panic anxiety have elevated levels of ORX in the cerebrospinal fluid compared to subjects without panic anxiety. Taken together, our results suggest that the ORX system may be involved in the pathophysiology of panic anxiety and that ORX antagonists constitute a potential new treatment strategy for panic disorder.