The two beta-tubulin genes of Chlamydomonas reinhardtii code for identical proteins.

Abstract
The two beta-tubulin genes of the unicellular green alga Chlamydomonas reinhardtii are expressed coordinately after deflagellation and produce two transcripts of 2.1 and 2.0 kilobases. Full-length cDNA clones corresponding to the transcript of each gene were isolated. DNA sequences were obtained from the cDNA clones and from cloned tubulin gene fragments. Both genes contained 1,332 base pairs of coding sequence, with only 19 nucleotide differences between the genes. Because all the differences occurred at the third base position of a codon and did not change the predicted amino acid sequence, we concluded that both beta-tubulin genes code for the same protein of 443 amino acids. The predicted amino acid sequence is 89 and 72% homologous with beta-tubulins from chicken and yeast cells, respectively. Each gene had three intervening sequences, which occurred at identical positions. Although the first two intervening sequences were not conserved between the two genes, the nucleotide sequence of the third intervening sequence was 89% conserved between the genes. The codon usage in the tubulin genes of C. reinhardtii was very biased: only 37 different codons were used. Striking differences occurred between the codons used in these nuclear genes and C. reinhardtii chloroplast genes.