Effects of nitrogen form, nighttime nutrient solution strength, and cultivar on greenhouse tomato production

Abstract
Higher greenhouse tomato (Lycopersicon esculentum Mill.) yield is obtained by using 25% of NH4‐N in solution compared to using NO3‐N as the sole nitrogen (N) source. However, blossom‐end rot (BER) may occur in tomato fruit when NH4‐N was present in nutrient solutions. High nutrient solution strengths improve tomato fruit quality, but can also increase BER. Two NH4‐N concentrations in solution (0 and 25%), and two nighttime solution strengths (NSS) (1X and 4X Steiner solution strength applied at 7 p.m.) were used to grow five indeterminate type greenhouse tomato cultivars: Caruso, Jumbo, Match, Max, and Trust. A significant interaction occurred between NH4‐N concentration and NSS factors: 0% NH4‐N and high NSS increased marketable yield and fruit:whole plant ratio, and reduced BER. In contrast, a concentration of 25% NH4‐N and high NSS reduced marketable yield and the fruit:whole plant ratio, and increased BER incidence. Max, Match, and Trust tomato cultivars produced high marketable yield and high dry weight of stem and leaves, but were susceptible to BER. Use of NH4‐N in solution reduced vegetative growth, and high NSS increased stem and leaf dry weight of the tomato plants. Fruit firmness was greater for the Max cultivar, and was unaffected by NH4‐N and NSS at the mature green, breaker, and red ripe fruit development stages. However, at the fully ripe stage, fruit firmness was higher with high NSS and with 25% NH4‐N.