Microviscosity of Plasmalemmas in Rose Petals as Affected by Age and Environmental Factors

Abstract
The microviscosity of the plasmalemma of protoplasts isolated from rose (Rosa hybrida cv. Golden Wave) petals was measured by fluorescence depolarization. The plasmalemma''s microviscosity was found to increase in petals which were allowed to age on cut flowers or after isolation as well as in isolated protoplasts aged in an aqueous medium. Increasing the temperature of the cut flowers or the isolated protoplasts enhanced the increase of the microviscosity of the protoplast plasmalemma. The mole ratio of free sterol to phospholipid was greater in protoplasts isolated from old flowers or in protoplasts aged after isolation than in protoplasts isolated from younger flowers. Microviscosity was greatest when protoplasts were aged at pH 4.4 and in the presence of Ca2+. Artificial alterations of the sterol to phospholipid ratio in the protoplasts, induced by treatment with liposomes, caused similar changes in their measured microviscosity. These findings strongly suggest that the increase in the petal plasmalemma microviscosity with age is associated with an increase in the sterol to phospholipid ratio which results, at least partially, from the activity of endogenous phospholipases.