Surface Structure of Nanometer-Sized Zinc Ferrite Particles by the Anomalous X-ray Scattering (AXS) Method

Abstract
The atomic structure of nanometer-sized zinc ferrite particles has been studied with the anomalous x-ray scattering (AXS) method as well as the ordinary x-ray diffraction. The analysis of the peak broadening indicated that little microstrain exists in these nanometer-sized particles, and the average size of the particles is estimated to be 4 nm. Since the ratio of atoms located on the surface increases extremely in such fine particles, the contribution of these surface atoms to the x-ray scattering intensity was evaluated. The interference function Qi (Q) for the surface atoms appears to be similar to that of the zinc-ferrite glass. The experimental intensity is successfully explained by using a simple particle model consisting of the about 0.2 nm thick surface layer having a glass-like structure and the internal atoms having the ferrite crystalline structure.