Abstract
The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state of the art coupled ocean–atmosphere general circulation model that was integrated for 125 years. Both the observations and model results support the picture that the decadal variability in the region of interest is based on a cycle involving unstable ocean–atmosphere interactions over the North Pacific. The period of this cycle is of the order of a few decades. The cycle involves the two major circulation regimes in the North Pacific climate system, the subtropical ocean gyre, and the Aleutian low. When, for instance, the subtropical ocean gyre is anomalously strong, more warm tropical waters are transported poleward by the Kuroshio and its extension, leading to a positive SST anomaly in the North Pacific. The atmospheric response to this SST anomaly involves a weakened Aleutian low, and the associated fluxes... Abstract The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state of the art coupled ocean–atmosphere general circulation model that was integrated for 125 years. Both the observations and model results support the picture that the decadal variability in the region of interest is based on a cycle involving unstable ocean–atmosphere interactions over the North Pacific. The period of this cycle is of the order of a few decades. The cycle involves the two major circulation regimes in the North Pacific climate system, the subtropical ocean gyre, and the Aleutian low. When, for instance, the subtropical ocean gyre is anomalously strong, more warm tropical waters are transported poleward by the Kuroshio and its extension, leading to a positive SST anomaly in the North Pacific. The atmospheric response to this SST anomaly involves a weakened Aleutian low, and the associated fluxes...