Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase
Open Access
- 1 May 2003
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 371 (3), 957-964
- https://doi.org/10.1042/bj20021722
Abstract
The p27Kip1 protein is a potent cyclin-dependent kinase inhibitor, the level of which is decreased in many common human cancers as a result of enhanced ubiquitin-dependent degradation. The multiprotein complex SCFSkp2 has been identified as the ubiquitin ligase that targets p27, but the functional interactions within this complex are not well understood. One component, the F-box protein Skp2, binds p27 when the latter is phosphorylated on Thr187, thus providing substrate specificity for the ligase. Recently, we and others have shown that the small cell cycle regulatory protein Cks1 plays a critical role in p27 ubiquitination by increasing the binding affinity of Skp2 for p27. Here we report the development of a homogeneous time-resolved fluorescence assay that allows the quantification of the molecular interactions between human recombinant Skp2, Cks1 and a p27-derived peptide phosphorylated on Thr187. Using this assay, we have determined the dissociation constant of the Skp2–Cks1 complex (Kd 140 ± 14 nM) and have shown that Skp2 binds phosphorylated p27 peptide with high affinity only in the presence of Cks1 (Kd 37 ± 2 nM). Cks1 does not bind directly to the p27 phosphopeptide or to Skp1, which confirms its suggested role as an allosteric effector of Skp2.Keywords
This publication has 27 references indexed in Scilit:
- Three Different Binding Sites of Cks1 Are Required for p27-Ubiquitin LigationJournal of Biological Chemistry, 2002
- Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complexNature, 2002
- Protein destruction: Adapting roles for Cks proteinsCurrent Biology, 2001
- A CDK-Independent Function of Mammalian Cks1Molecular Cell, 2001
- Crystal Structure and Mutational Analysis of the Human CDK2 Kinase Complex with Cell Cycle–Regulatory Protein CksHs1Cell, 1996
- Principles of CDK regulationNature, 1995
- Crystallization and preliminary crystallographic study of human CksHs1: A cell cycle regulatory proteinProteins-Structure Function and Bioinformatics, 1995
- G1 control in mammalian cellsJournal of Cell Science, 1994
- The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex.Molecular and Cellular Biology, 1989
- The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant functionMolecular Genetics and Genomics, 1986