Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065

Abstract
The synthesis, physicochemical propeties, and biological activities of a series of novel spiro cyclopropyl compounds, modeled on the potent antitumor antibiotic CC-1065 (1), are described. Many of these synthetic analogues are significantly more effective than 1 against murine tumors. In particular, compound 27 exhibits high activity and potency. Structure-activity analysis supports a molecular mechanism for biological action involving hydrophobic interaction of the drug with DNA and acid-catalyzed alkylation of DNA.