Regulation of Central Corticosteroid Receptors Following Short‐Term Activation of Serotonin Transmission by 5‐Hydroxy‐ L‐Tryptophan or Fluoxetine

Abstract
Alterations of the hypothalamic-pituitary-adrenal (HPA) axis function characterized by a decreased negative feedback capacity are often associated with affective disorders and are corrected by treatment with antidepressant drugs. To gain a better understanding of the effects of the antidepressant drug fluoxetine, a specific serotonin (5-HT) reuptake inhibitor, on central corticosteroid receptors, the effects of short-term activation of serotonin transmission on central corticosteroid receptor expression were analysed in adrenalectomized (ADX) rats either supplemented or not with corticosterone. Serotonin transmission was stimulated either by a single injection of the 5-HT precursor, 5-hydroxy- l-tryptophan (5-HTP), or by a 2-day treatment with fluoxetine. In ADX rats, administration of 5-HTP decreased hippocampal mineralocorticoid (MR) and glucocorticoid (GR) receptor numbers 24 h later, while their respective mRNAs were unchanged and these effects of 5-HTP were mediated by 5-HT2 receptors. In the hypothalamus, GR mRNAs and binding sites decreased 3 h and 24 h after 5-HTP, respectively. By contrast, fluoxetine treatment increased hippocampal MR and GR mRNAs and MR binding sites while GR number remained unchanged. In ADX rats supplemented with corticosterone, 5-HTP and fluoxetine treatment had the same effects on corticosteroid receptors compared to those observed in non supplemented ADX rats: 5-HTP decreased hippocampal MR and GR and hypothalamic GR while fluoxetine treatment increased hippocampal MR. These results show that short-term stimulation of 5-HT transmission by 5-HTP decreases hippocampal and hypothalamic corticosteroid receptor numbers through a corticosterone-independent mechanism. It is hypothesized that the delayed maximal increase in extracellular 5-HT contents after fluoxetine treatment, due to negative feedback regulations induced by the activation of 5-HT1A and 5-HT1B autoreceptors, is not the primary cause for the delayed normalization of corticosteroid receptor numbers that regulates the HPA axis functioning.