Uric acid photo-oxidation assay: in vitro comparison of sunscreening agents

Abstract
We present a new method to evaluate the photo-oxidative activity of sunscreening agents based on the photodynamic oxidation of uric acid. Uric acid was selected as the oxidant probe for its high reactivity to singlet oxygen and oxygen radicals, high sensitivity of detection using electrochemical (EC) techniques, low light absorptivity and high photochemical stability in the UVA/B region of interest, and stability to autoxidation. The method is demonstrated by the photodynamic oxidation of uric acid on co-irradiation with Rose Bengal, a highly efficient photosensitizing dye for the production of singlet oxygen (1O2). Using this assay we found that the relative photodynamic oxidation rates of UVB-absorbing sunscreens in 80% methanol on irradiation with >290 nm light decreased in the order 2-ethylhexyl 4-dimethylaminobenzoate (DMABA-2EH) >> 2-ethylhexyl 4-methoxycinnamate (MCA-2EH) and the experimental sunscreens, 1-(1,1-dimethylethyl)-3-octanoyl-4,4-dimethyl- 1,4,5,6,-tetrahydropyridine (ICI-319) and 1-(2-methylpropyl)-3-propionyl-4,4-dimethyl-1,4,5,6-tetrahydropyridine (ICI-855). The relative photodynamic oxidation rates of UVA-absorbing sunscreens decreased in the order 4-tert-butyl-4'-methoxydibenzoylmethane (BMDBM) and 4-(2-propyl)benzophenone (PB) > 2-hydroxy-4'-methoxy-benzophenone (HMB) and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB). We have confirmed the photodynamic activity of DMABA-2EH for the production of singlet oxygen (1O2) using electron paramagnetic resonance (EPR) spectroscopy and the reagent 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP). We failed to detect the photodynamic production of the oxyradicals, superoxide (O2.-) and hydroxyl radical (HO.) using N-tert-butyl-a-phenylnitrone (PBN) and 5,5-dimethyl-1-pyrrolidine-1-oxide (DMPO) as a result of photochemical interference caused by these spin-trapping reagents. The uric acid photo-oxidation assay was also used to compare the photodynamic reactivity of light-reflective, microfine oxides TiO2, ZnO and ZrO2 suspended in aqueous 80% methanol. All of the microfine oxides (uncoated) showed greater photodynamic reactivity in equimolar dispersion than did any of the organic UVA- and UVB-absorbing sunscreens in homogeneous solution. In this assay the photodynamic oxidation rates for the microfine oxides decreased in the order ZnO >> TiO2 (anatase) > ZrO2 > TiO2 (rutile).