Abstract
Two continuous phase constant envelope modulation schemes are considered for use in digital mobile radio communication systems. These two schemes, duobinary coded minimum shift keying (MSK) and tamed frequency modulation (TFM), use partial response signaling to achieve efficient power spectrum. Therefore, they are suitable candidates for the application of digital data transmission via mobile radio where spectrum efficiency is an important consideration. The mobile communication channel is characterized by fast Rayleigh fading and cochannel interference resulting from the reuse of the channels. The error rate performance of duobinary coded MSK and TFM has been studied under these environments with noncoherent detection. A closed form expression for the probability of error of duobinary coded MSK with discriminator detection has been derived and evaluated for different cases of fast and slow fading and cochannel interference. The probability of error of duobinary coded MSK and TFM with differential detection has been calculated by numerical integrations for different cases of slow and fast fading and cochannel interference.

This publication has 22 references indexed in Scilit: