Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data
- 1 April 1985
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 2 (2), 101-118
- https://doi.org/10.1016/s0294-1449(16)30405-x
Abstract
In this paper we consider the Vlasov Poisson equation in three space variables in the whole space. We show the existence of dispersion property. With this dispersion property we are able to prove the existence of a smooth solution for all times under the following assumption: the initial data are localised and small enough. Résumé: On considère l’équation de Vlasov Poisson en dimension 3, dans l’espace entier. On dégage une propriété de dispersion. L’utilisation de cette propriété permet de prouver l’existence d’une solution régulière pour tout temps, pourvu que les données initiales soient localisées et assez petites.This publication has 3 references indexed in Scilit:
- Global, small amplitude solutions to nonlinear evolution equationsCommunications on Pure and Applied Mathematics, 1983
- Long-time behavior of solutions to nonlinear evolution equationsArchive for Rational Mechanics and Analysis, 1982
- Global existence of a weak solution of vlasov's system of equationsUSSR Computational Mathematics and Mathematical Physics, 1975