Spatial patterns of human gene frequencies in Europe

Abstract
The aims of this study of spatial patterns of human gene frequencies in Europe are twofold. One is to present new methodology developed for the analysis of such data. The other is to report on the diversity of spatial patterns observed in Europe and their interpretation as evidence of population processes. Spatial variation in 59 allele and haplotype frequencies (26 genetic systems) for polymorphisms in blood antigens, enzymes, and proteins is analyzed for an aggregate of 3,384 localities, using homogeneity tests, one‐dimensional and directional spatial correlograms, and SYMAP interpolated surfaces. The data matrices are reduced to reveal the principal patterns by clustering techniques.The findings of this study can be summarized as follows: 1) There is significant heterogeneity in allele frequencies among the localities for all but one genetic system. 2) There are significant spatial patterns for most allele frequencies. 3) There is a substantial minority of clinal patterns in these populations. Clinal trends are found more frequently in HLA alleles than for other variables. North‐south and northwest‐southwest gradients predominate. 4) There is a strong decline in overall genetic similarity with geographic distance for most variables. 5) There are few, if any, appreciable correlations in pairs of allele frequencies over the continent, and there is little interesting correlation structure in the resulting correlation matrix. 6) Few spatial correlograms are markedly similar to each other, yet they form well‐defined clusters. Spatial variation patterns, therefore, differ among allele frequencies.Patterns of human gene frequencies in modern Europe are diverse and complex. No single model suffices for interpretation of the observed genetic structure. Some clinal patterns reported here support the Neolithic demicexpansion hypothesis, others suggest latitudinal selection. Most of the clinal patterns are in HLA alleles, but there is also evidence from ABO for east‐west migration diffusion. The majority of patterns are patchy, consistent with hypotheses of isolation by distance or of settlement of genetically differing, subsequently expanding ethnic groups. While undoubtedly there has been an ongoing stochastic process of differentiation consistent with the isolationby‐distance model, this has not obscured the directional patterns caused by migration (demic diffusion), and has perhaps only reinforced the contribution from settlement of ethnic units to patterns of genetic variation. However, the impact of the latter is most difficult to discern and requires further methodological developments.