A Recombinant Newcastle Disease Virus (NDV) Expressing VP2 Protein of Infectious Bursal Disease Virus (IBDV) Protects against NDV and IBDV

Abstract
Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV. By using the reverse genetics approach, we devised a recombinant Newcastle disease virus (NDV) vector from a commonly used vaccine strain LaSota to express the host-protective immunogen VP2 of a variant IBDV strain GLS-5. The gene encoding the VP2 protein of the IBDV was inserted into the most 3′-proximal locus of a full-length NDV cDNA for high-level expression. We successfully recovered the recombinant virus, rLaSota/VP2. The rLaSota/VP2 was genetically stable, at least up to 12 serial passages in chicken embryos, and was shown to express the VP2 protein. The VP2 protein was not incorporated into the virions of recombinant virus. Recombinant rLaSota/VP2 replicated to a titer similar to that of parental NDV strain LaSota in chicken embryos and cell cultures. To assess protective efficacy of the rLaSota/VP2, 2-day-old specific-pathogen-free chickens were vaccinated with the recombinant virus and challenged with a highly virulent NDV strain Texas GB or IBDV variant strain GLS-5 at 3 weeks postvaccination. Vaccination with rLaSota/VP2 generated antibody responses against both NDV and IBDV and provided 90% protection against NDV and IBDV. Booster immunization induced higher levels of antibody responses against both NDV and IBDV and conferred complete protection against both viruses. These results indicate that the recombinant NDV can be used as a vaccine vector for other avian pathogens.

This publication has 53 references indexed in Scilit: