A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells

Abstract
Stimulation of bovine adrenal chromaffin cells results in a rise in the concentration of cytosolic calcium which triggers the release of catecholamines by exocytosis. Several cytosolic proteins that bind to secretory granule membranes in a calcium-dependent manner have been implicated in exocytosis and some belong to a family of calcium-binding proteins, the annexins. One of these, calpactin, is a tetramer consisting of two heavy and two light chains (relative molecular masses 36,000 and 10,000 respectively) and can aggregate and fuse membranes in vitro in the presence of arachidonic acid. Calpactin is found at the cell periphery and is phosphorylated when chromaffin cells are stimulated. We show here that both calpactin and calpactin heavy chain (p36) reconstitute secretion in permeabilized chromaffin cells in which secretion has been reduced as a result of leakage of cellular components. This effect is inhibited by an affinity-purified antibody against p36. Secretion from permeabilized cells is inhibited by a synthetic annexin-consensus peptide, but not by a nonspecific hydrophobic peptide; this inhibition is reversed by p36. Our results indicate that either calpactin or p36 is essential for exocytosis.