Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model
Top Cited Papers
Open Access
- 7 January 2010
- journal article
- research article
- Published by Wiley in Arthritis & Rheumatism
- Vol. 62 (2), 340-350
- https://doi.org/10.1002/art.27271
Abstract
Objective An increased risk of tuberculosis has been documented in humans treated with tumor necrosis factor α (TNFα)–neutralizing agents. In murine models, impaired signaling by TNF causes exacerbation of both acute and chronic infection associated with aberrant granuloma formation and maintenance. This study was undertaken to investigate immune modulation in the setting of TNF neutralization in primary and latent tuberculosis in a non‐human primate model. Methods Cynomolgus macaques 4 years of age or older were infected with Mycobacterium tuberculosis and subjected to clinical, microbiologic, immunologic, and radiographic examinations. Monkeys were classified as having active or latent disease 6–8 months after infection, based on clinical criteria. Monkeys used in acute infection studies were randomized to receive either adalimumab (prior to and during infection) or no treatment. Monkeys with latent infection that were randomized to receive TNF‐neutralizing agent were given either an inhibitor of soluble TNF, recombinant methionyl human soluble TNF receptor I (p55‐TNFRI), or adalimumab. Control monkeys with latent infection were given no treatment or saline. Data from previously studied monkeys with active or latent disease were also used for comparison. Results Administration of TNF‐neutralizing agents prior to M tuberculosis infection resulted in fulminant and disseminated disease by 8 weeks after infection. Neutralization of TNF in latently infected cynomolgus macaques caused reactivation in a majority of animals as determined by gross pathologic examination and bacterial burden. A spectrum of dissemination was noted, including extrapulmonary disease. Surprisingly, monkeys that developed primary and reactivation tuberculosis after TNF neutralization had similar granuloma structure and composition to that of control monkeys with active disease. TNF neutralization was associated with increased levels of interleukin‐12, decreased levels of CCL4, increased chemokine receptor expression, and reduced mycobacteria‐induced interferon‐γ production in blood but not in the affected mediastinal lymph nodes. Finally, the first signs of reactivation often occurred in thoracic lymph nodes. Conclusion These findings have important clinical implications for determining the mechanism of TNF neutralization–related tuberculosis.Keywords
This publication has 43 references indexed in Scilit:
- Quantitative Comparison of Active and Latent Tuberculosis in the Cynomolgus Macaque ModelInfection and Immunity, 2009
- Anti-TNF immunotherapy reduces CD8+ T cell–mediated antimicrobial activity against Mycobacterium tuberculosis in humansJournal of Clinical Investigation, 2009
- Anti‐inflammatory effects of tumour necrosis factor (TNF)‐α are mediated via TNF‐R2 (p75) in tolerogenic transforming growth factor‐β‐treated antigen‐presenting cellsImmunology, 2009
- Synergy between Individual TNF-Dependent Functions Determines Granuloma Performance for Controlling Mycobacterium tuberculosis InfectionThe Journal of Immunology, 2009
- Tumor Necrosis Factor Blockers Influence Macrophage Responses toMycobacterium tuberculosisThe Journal of Infectious Diseases, 2008
- Tumor Necrosis Factor Signaling Mediates Resistance to Mycobacteria by Inhibiting Bacterial Growth and Macrophage DeathImmunity, 2008
- Macrophage and T Cell Dynamics during the Development and Disintegration of Mycobacterial GranulomasImmunity, 2008
- Early Events in Mycobacterium tuberculosis Infection in Cynomolgus MacaquesInfection and Immunity, 2006
- A case of tuberculous meningoencephalitis in a patient with Behçet’s diseaseClinical Rheumatology, 2005
- Tuberculosis Associated with Infliximab, a Tumor Necrosis Factor α–Neutralizing AgentNew England Journal of Medicine, 2001