A structural basis for mutational inactivation of the tumour suppressor Smad4
- 3 July 1997
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 388 (6637), 87-93
- https://doi.org/10.1038/40431
Abstract
The Smad4/DPC4 tumour suppressor1 is inactivated in nearly half of pancreatic carcinomas2 and to a lesser extent in a variety of other cancers2,3,4. Smad4/DPC4, and the related tumour suppressor Smad2, belong to the SMAD family of proteins that mediate signalling by the TGF-β/activin/BMP-2/4 cytokine superfamily from receptor Ser/Thr protein kinases at the cell surface to the nucleus5,6,7. SMAD proteins, which are phosphorylated by the activated receptor, propagate the signal, in part, through homo- and hetero-oligomeric interactions8,9,10,11,12,13. Smad4/DPC4 plays a central role as it is the shared hetero-oligomerization partner of the other SMADs. The conserved carboxy-terminal domains of SMADs are sufficient for inducing most of the ligand-specific effects, and are the primary targets of tumorigenic inactivation. We now describe the crystal structure of the C-terminal domain (CTD) of the Smad4/DPC4 tumour suppressor, determined at 2.5 Å resolution. The structure reveals that the Smad4/DPC4 CTD forms a crystallographic trimer through a conserved protein–protein interface, to which the majority of the tumour-derived missense mutations map. These mutations disrupt homo-oligomerization in vitro and in vivo, indicating that the trimeric assembly of the Smad4/DPC4 CTD is critical for signalling and is disrupted by tumorigenic mutations.Keywords
This publication has 24 references indexed in Scilit:
- Intracellular signalling: The Mad way to do itCurrent Biology, 1996
- Partnership between DPC4 and SMAD proteins in TGF-β signalling pathwaysNature, 1996
- Receptor-associated Mad homologues synergize as effectors of the TGF-β responseNature, 1996
- Serine Phosphorylation, Chromosomal Localization, and Transforming Growth Factor-β Signal Transduction by HumanJournal of Biological Chemistry, 1996
- TGFβ Signaling: Receptors, Transducers, and Mad ProteinsCell, 1996
- DPC4 , A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1Science, 1996
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994
- SQUASH – combining constraints for macromolecular phase refinement and extensionActa Crystallographica Section D-Biological Crystallography, 1993
- MOLSCRIPT: a program to produce both detailed and schematic plots of protein structuresJournal of Applied Crystallography, 1991
- Improved methods for building protein models in electron density maps and the location of errors in these modelsActa Crystallographica Section A Foundations of Crystallography, 1991