Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves

Abstract
Arabidopsis genome expression pattern changes in response to phosphate (Pi) starvation were examined during a 3-d period after removal of Pi from the growth medium. Available Pi concentration was decreased after the first 24 h of Pi starvation in roots by about 22%, followed by a slow recovery during the 2nd and 3rd d after Pi starvation, but no significant change was observed in leaves within the 3 d of Pi starvation. Microarray analysis revealed that more than 1,800 of the 6,172 genes present in the array were regulated by 2-fold or more within 72 h from the onset of Pi starvation. Analysis of these Pi starvation-responsive genes shows that they belong to wide range of functional categories. Many genes for photosynthesis and nitrogen assimilation were down-regulated. A complex set of metabolic adaptations appears to occur during Pi starvation. More than 100 genes each for transcription factors and cell-signaling proteins were regulated in response to Pi starvation, implying major regulatory changes in cellular growth and development. A significant fraction of those regulatory genes exhibited distinct or even contrasting expression in leaves and roots in response to Pi starvation, supporting the idea that distinct Pi starvation response strategies are used for different plant organs in response to a shortage of Pi in the growth medium.