Matrix metalloproteinases (MMPs) are overexpressed in a variety of tumor tissues and cell lines, and their expression is highly correlated to tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, we constructed two mutated anthrax toxin protective antigen (PA) proteins in which the furin protease cleavage site is replaced by sequences selectively cleaved by MMPs. These MMP-targeted PA proteins were activated rapidly and selectively on the surface of MMP-overexpressing tumor cells. The activated PA proteins caused internalization of a recombinant cytotoxin, FP59, consisting of anthrax toxin lethal factor residues 1-254 fused to the ADP-ribosylation domain of Pseudomonas exotoxin A. The toxicity of the mutated PA proteins for MMP-overexpressing cells was blocked by hydroxamate inhibitors of MMPs, including BB94, and by a tissue inhibitor of matrix metalloproteinases (TIMP-2). The mutated PA proteins killed MMP-overexpressing tumor cells while sparing nontumorigenic normal cells when these were grown together in a coculture model, indicating that PA activation occurred on the tumor cell surface and not in the supernatant. This method of achieving cell-type specificity is conceptually distinct from, and potentially synergistic with, the more common strategy of retargeting a protein toxin by fusion to a growth factor, cytokine, or antibody.