The Origin of the Short-Circuit Current in the Isolated Skin of the South American Frog Leptodactylus ocellatus

Abstract
In isolated skins of Leptodactylus ocellatus the short-circuit current is smaller than the sodium net flux and this difference disappears when the skins are bathed in solutions in which the chloride ions have been replaced by sulfate or methylsulfate ions. There is a net movement of chloride ions from outside to inside of the skins in the short-circuit condition with chloride Ringer's solutions bathing the skins. The addition of ouabain to the inside solution markedly reduced not only sodium net flux but also the chloride net influx found. Copper ions added to the outside solutions produced a rise in short-circuit current, as well as the known increase in potential difference. In sodium-free Ringer's (sodium replaced by choline) the orientation of the potential difference across the skins was reversed, the inside being negative instead of positive. The results are interpreted as direct or indirect indications of the presence of a net transfer of chloride ions from outside to inside of these frog skins.