Regulation of flowering time by light quality

Abstract
The transition to flowering in plants is regulated by environmental factors such as temperature and light1. Plants grown under dense canopies or at high density perceive a decrease in the ratio of red to far-red incoming light. This change in light quality serves as a warning of competition, triggering a series of responses known collectively as the ‘shade-avoidance syndrome’. During shade avoidance, stems elongate at the expense of leaf expansion, and flowering is accelerated2,3. Of the five phytochromes—a family of red/far-red light photoreceptors—in Arabidopsis, phytochrome B (phyB) has the most significant role in shade-avoidance responses4,5, but the mechanisms by which phyB regulates flowering in response to altered ratios of red to far-red light are largely unknown. Here we identify PFT1 (PHYTOCHROME AND FLOWERING TIME 1), a nuclear protein that acts in a phyB pathway and induces flowering in response to suboptimal light conditions. PFT1 functions downstream of phyB to regulate the expression of FLOWERING LOCUS T (FT), providing evidence for the existence of a light-quality pathway that regulates flowering time in plants.