Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks

Abstract
Grad’s method of moments is employed to derive balance laws and constitutive relations for plane flows of a dense gas consisting of identical, rough, inelastic, circular disks. Two temperatures are involved; these are proportional to the kinetic energies associated with fluctuations in translational velocity and spin, respectively. When the single particle velocity distribution function is assumed to be close to a two‐temperature Maxwellian, two distinct theories are obtained. One applies when the particles are almost smooth and the collisions between them are nearly elastic; the other applies to nearly elastic particles that, in a collision, almost reverse the relative velocity of their points of contact. I both cases energy is nearly conserved in collisions.