Abstract
The differential cross section for the photoproduction of a π meson from the neutron bound in the deuteron was measured for pion laboratory angles of 76°, 96°, and 118° at incident gamma-ray energies in the region of 275 MeV. The π meson and the high-energy proton were detected. The pion momentum and angle were measured by sets of spark chambers situated in front of and behind a magnetic field. The proton angle and range were also measured with spark chambers. To calculate "free" neutron cross sections from our data, we used a modified version of the extrapolation method suggested by Chew and Low. By observing the π+ only, the differential cross section for π+ photoproduction from hydrogen also was measured. As determined by this experiment, the differential cross section for photoproduction of a π meson from a "free" neutron and the differential cross section for photoproduction of a π+ meson from hydrogen are as follows: Eγlab275 MeV These results disagree with the dispersion theory predictions of Chew, Goldberger, Low, and Nambu. They also disagree with McKinley's dispersion theory calculations which include a bipion or ρ-meson term in the production amplitudes.