Abstract
Stable clones of HEK293 cells expressing either FLAG(TM) epitope-tagged, wild type human beta(1)- and beta(2)-adrenoceptors or C-terminally green fluorescent protein (GFP)-tagged forms of these receptors were established. The binding affinity of [(3)H]-dihydroalprenolol and other ligands was little affected by addition of GFP to the C-terminal of either receptor. Isoprenaline induced the internalisation of both beta(1)-adrenoceptor-GFP and beta(2)-adrenoceptor-GFP and following removal of the agonist both constructs were able to recycle to the cell surface. The extent of internalisation of beta(2)-adrenoceptor-GFP produced by isoprenaline was substantially greater than for beta(1)-adrenoceptor-GFP. C-terminal addition of GFP slowed markedly the rate of internalization of both the beta(1)-adrenoceptor and the beta(2)-adrenoceptor in response to isoprenaline. Sustained exposure to isoprenaline (24 h) produced substantially greater levels of downregulation of native beta(2)-adrenoceptor compared to beta(2)-adrenoceptor-GFP although both were equally effectively removed from the plasma membrane. Sustained exposure to isoprenaline resulted in a large fraction of beta(2)-adrenoceptor-GFP becoming trapped in internal vesicles/lysosomes but not degraded. Even after sustained exposure to isoprenaline a significant fraction of beta(1)-adrenoceptor-GFP remained at the cell surface. These results indicate that although GFP tagging of beta-adrenoceptors can provide qualitative visual patterns of agonist-induced receptor trafficking and regulation in HEK293 cells the quantitative details vary markedly from those obtained with the unmodified receptors.

This publication has 31 references indexed in Scilit: