Abstract
Let T be a tree on n vertices. The Laplacian matrix is L(T)=D(T)−A(T), where D(T) is the diagonal matrix of vertex degrees and A(T) is the adjacency matrix. A special case of the Matrix-Tree Theorem is that the adjugate of L(T) is the n-by-n matrix of l's. The (n−l)-square "edge version" of L(T)is K(T). The main result is a graph-theoretic interpretation of the entries of the adjugate of K(T). As an application, it is shown that the Wiener Index from chemistry is the trace of this adjugate.

This publication has 8 references indexed in Scilit: