Abstract
Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony’s UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described. © 2003 The Electrochemical Society. All rights reserved.