Abstract
The resistance to blood flow in the pulmonary circulation of dogs (PVR) increased when their lungs were ventilated with 95–100% oxygen and were perfused with blood that recirculated only through the pulmonary circulation; the systemic circulation was perfused independently. This increase in PVR occurred even when nerves were cut or blocked but was abolished by inhaled isopropylarterenol aerosol. Elevation of intra-alveolar Po2 without increase in pulmonary arterial blood Po2 was sufficient to increase pulmonary vascular resistance. The pulmonary venules or veins were thought to be the likely site of the constriction. These reactions were qualitatively similar to those produced by injection of serotonin or histamine into the pulmonary circulation. The time course of the response and failure to obtain it when the blood was perfused through the remainder of the body before it re-entered the pulmonary circulation are compatible with a theory that high intra-alveolar O2 tension activates a vasoconstrictor material in the pulmonary parenchyma.