In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein.

Abstract
The RecA protein and other DNA strand exchange proteins are characterized by their ability to bind and pair DNA in a sequence-independent manner. In vitro selection experiments demonstrate, unexpectedly, that RecA protein has a preferential affinity for DNA sequences rich in GT composition. Such GT-rich sequences are present in loci that display increased recombinational activity in both eukaryotes and prokaryotes, including the Escherichia coli recombination hotspot, chi (5'-GCTGGTGG-3'). Interestingly, these selected sequences, or chi-containing substrates, display both an enhanced rate and extent of homologous pairing in RecA protein-dependent homologous pairing reactions. Thus, the binding and pairing of DNA by RecA protein is composition-dependent, suggesting that a component of the elevated recombinational activity of chi and increased genomic rearrangements at certain DNA sequences in eukaryotes is contributed by enhanced DNA pairing activity.