Characterization of the calcium binding to spectrins

Abstract
Calcium binding to brain and erythrocyte spectrins was studied at physiological ionic strength by a calcium overlay assay and aqueous two-phase partitioning. When the spectrins were immobilized on nylon membranes by slot blotting, the overlay assay showed that even though both spectrins bound 45Ca2+, the brain protein displayed much greater affinity for calcium ions than erythrocyte spectrin did. Since the observed binding was weaker than that displayed by calmodulin under similar conditions, the overlay assay results indicated that the binding must be weaker than 1 microM. The phase partition experiments showed that there are at least two sites for calcium on brain spectrin and that calcium binding to one of these sites is reduced significantly by magnesium ions. From the partition isotherm, the dissociation constants were estimated as 50 microM for the Mg(2+)-independent site and 150 microM for the Mg(2+)-dependent site. The phase partition results also showed that erythrocyte spectrin bound calcium ions at least 1 order of magnitude weaker. By examining calcium binding to slot-blotted synthetic peptides, we identified two binding sites in brain spectrin. One mapped to the second putative calcium binding site (EF-hand) in alpha-spectrin and the other to the 36 amino acid residue long insert in domain 11. In addition, a tryptic fragment derived from the C-terminal of erythrocyte alpha-spectrin, which contained the two postulated EF-hands, also bound calcium. These findings suggest that the calcium signal system may also involve direct binding of calcium to spectrin beside known calcium modulators such as calmodulin and calpain.(ABSTRACT TRUNCATED AT 250 WORDS)