Abstract
Hydroxylation systems containing cytochromes, proteins and ascorbic acid were studied at physiological pH (7.4) under O2 or N2 with added H2O2. Proteins inhibited aromatic hydroxylation of p-nitrophenol or oxidative demethylation of ethylmorphine in ascorbic acid-containing systems incubated under O2, but strongly activated the systems containing H2O2. Cytochrome c and partially purified cytochrome P-450 from rat liver microsomal preparations activated the system in either O2 or H2O2. The systems needed ascorbic acid (or other enol structures) for activation. Cytochrome Fe participated probably in the activation of O2; cytochrome protein participated in the free-radical activation of H2O2 (or of O2).