STUDIES OF THE MITOCHONDRIAL ENERGY-TRANSFER SYSTEM OF BROWN ADIPOSE TISSUE

Abstract
An investigation of the mechanisms of norepinephrine action and heat production in brown adipose tissue from newborn rabbits has been carried out. Data obtained with the use of biochemical techniques has been correlated with morphological data from electron micros-copy. Norepinephrine was found to stimulate the respiration of brown fat in vitro. Inhibitors of glycolysis abolish this effect, whereas inhibitors of oxidative phosphorylation do not, at least not to the same extent. Brown fat is readily permeable to added Krebs cycle intermediates. Substrate level phosphorylation, but no electron transport-coupled phosphorylation, could be demonstrated in isolated mitochondria. It is suggested that the rate of fatty acid oxidation is limited by the availability of phosphate acceptor systems which break down ATP formed at the substrate level and thus provide ADP for further substrate level phosphorylation. The theory of respiratory control by the action of reesterification of fatty acids is discussed in the light of these findings. Under the electron microscope, brown fat mitochondria are characterized by their large size, tightly packed cristae, and by the different types of granules in the matrix. No elementary particles are seen when the mitochondria are examined by the negative-staining technique. The absence of electron transport-coupled phosphorylation together with the apparent absence of elementary particles seems to be of particular significance.