The probability that the largest observation is censored

Abstract
Suppose n possibly censored survival times are observed under an independent censoring model, in which the observed times are generated as the minimum of independent positive failure and censor random variables. A practical difficulty arises when the largest observation is censored since then the usual non-parametric estimator of the distribution of the survival time is improper. We calculate the probability that this occurs and give necessary and sufficient conditions for this probability to converge to 0 as n →∞. As an application, we show that if this probability is 0, asymptotically, then a consistent estimator for the mean failure time can be found. An almost sure version of the problem is also considered.