Abstract
Uniaxial compression tests were conducted on polycrystalline-ice samples with random c-axis orientation and steady-state creep rates were determined. Experiments were conducted on both inclusion-bearing and inclusion-free ice and were run at constant stress and constant temperature. During freezing, the presence of inclusions in low concentrations inhibits crystal growth; variations in the volume-fraction of inclusions thus result in variations in ice-crystal size. The creep rate of polycrystalline ice at high temperatures and moderate stresses is extremely sensitive to variations in ice-crystal size. Due to an apparent inversion between dislocation-controlled creep and diffusion-controlled creep, the optimum grain size for creep resistance is about 1.0 mm. Increasing or decreasing the average crystal size from this critical value results in an increase in secondary-creep rate.