Abstract
Relativistic line strengths have been computed for a large number of transitions using Dirac wave functions for the one-electron, hydrogen-like ions. As expected, the results indicate that relativistic effects are quite small for low stages of ionization. However, in general, they also remain small throughout a large portion of the isoelectronic sequence, becoming typically of the order of 10 percent in the vicinity of Z = 50, after which they grow quite rapidly. This suggests that for multielectron ions a basically nonrelativistic theory might well be adequate for light atom isoelectronic ions through as much as 30 or 40 stages of ionization.