Self-duality in four-dimensional Riemannian geometry

Abstract
We present a self-contained account of the ideas of R. Penrose connecting four-dimensional Riemannian geometry with three-dimensional complex analysis. In particular we apply this to the self-dual Yang-Mills equations in Euclidean 4-space and compute the number of moduli for any compact gauge group. Results previously announced are treated with full detail and extended in a number of directions.

This publication has 10 references indexed in Scilit: